1
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Consider the differential equation $$\left( {{t^2} - 81} \right){{dy} \over {dt}} + 5ty = \sin \left( t \right)\,\,$$ with $$y\left( 1 \right) = 2\pi .$$ There exists a unique solution for this differential equation when $$t$$ belongs to the interval
2
GATE EE 2016 Set 2
Numerical
+2
-0
Let $$y(x)$$ be the solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 4y = 0\,\,$$ with initial conditions $$y(0)=0$$ and $$\,\,{\left. {{{dy} \over {dx}}} \right|_{x = 0}} = 1.\,\,$$ Then the value of $$y(1)$$ is __________.
Your input ____
3
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
A function $$y(t),$$ such that $$y(0)=1$$ and $$\,y\left( 1 \right) = 3{e^{ - 1}},\,\,$$ is a solution of the differential equation $$\,\,{{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0\,\,$$ Then $$y(2)$$ is
4
GATE EE 2015 Set 1
Numerical
+2
-0
A solution of the ordinary differential equation $$\,\,{{{d^2}y} \over {d{t^2}}} + 5{{dy} \over {dt}} + 6y = 0\,\,$$ is such that $$y(0)=2$$ and $$y(1)=$$ $$ - \left( {{{1 - 3e} \over {{e^3}}}} \right).$$ The value of $${{dy} \over {dt}}\left( 0 \right)$$ is
Your input ____
Questions Asked from Differential Equations (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics