1
GATE EE 2017 Set 1
+2
-0.6
Consider the differential equation $$\left( {{t^2} - 81} \right){{dy} \over {dt}} + 5ty = \sin \left( t \right)\,\,$$ with $$y\left( 1 \right) = 2\pi .$$ There exists a unique solution for this differential equation when $$t$$ belongs to the interval
A
$$(-2, 2)$$
B
$$(-10, 10)$$
C
$$(-10, 2)$$
D
$$(0, 10)$$
2
GATE EE 2016 Set 2
Numerical
+2
-0
Let $$y(x)$$ be the solution of the differential equation $$\,\,{{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 4y = 0\,\,$$ with initial conditions $$y(0)=0$$ and $$\,\,{\left. {{{dy} \over {dx}}} \right|_{x = 0}} = 1.\,\,$$ Then the value of $$y(1)$$ is __________.
3
GATE EE 2016 Set 1
+2
-0.6
A function $$y(t),$$ such that $$y(0)=1$$ and $$\,y\left( 1 \right) = 3{e^{ - 1}},\,\,$$ is a solution of the differential equation $$\,\,{{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0\,\,$$ Then $$y(2)$$ is
A
$$5{e^{ - 1}}$$
B
$$5{e^{ - 2}}$$
C
$$7{e^{ - 1}}$$
D
$$7{e^{ - 2}}$$
4
GATE EE 2015 Set 2
Numerical
+2
-0
A differential equation $$\,\,{{di} \over {dt}} - 0.21 = 0\,\,$$ is applicable over $$\,\, - 10 < t < 10.\,\,$$ If $$i(4)=10,$$ then $$i(-5)$$ is
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics
Digital Electronics
EXAM MAP
Joint Entrance Examination