1
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
A function $$y(t),$$ such that $$y(0)=1$$ and $$\,y\left( 1 \right) = 3{e^{ - 1}},\,\,$$ is a solution of the differential equation $$\,\,{{{d^2}y} \over {d{t^2}}} + 2{{dy} \over {dt}} + y = 0\,\,$$ Then $$y(2)$$ is
A
$$5{e^{ - 1}}$$
B
$$5{e^{ - 2}}$$
C
$$7{e^{ - 1}}$$
D
$$7{e^{ - 2}}$$
2
GATE EE 2015 Set 1
Numerical
+2
-0
A solution of the ordinary differential equation $$\,\,{{{d^2}y} \over {d{t^2}}} + 5{{dy} \over {dt}} + 6y = 0\,\,$$ is such that $$y(0)=2$$ and $$y(1)=$$ $$ - \left( {{{1 - 3e} \over {{e^3}}}} \right).$$ The value of $${{dy} \over {dt}}\left( 0 \right)$$ is
Your input ____
3
GATE EE 2015 Set 2
Numerical
+2
-0
A differential equation $$\,\,{{di} \over {dt}} - 0.21 = 0\,\,$$ is applicable over $$\,\, - 10 < t < 10.\,\,$$ If $$i(4)=10,$$ then $$i(-5)$$ is
Your input ____
4
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Consider the differential equation $${x^2}{{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}} - y = 0.\,\,$$ Which of the following is a solution to this differential equation for $$x > 0?$$
A
$${e^x}$$
B
$${x^2}$$
C
$$1/x$$
D
$$lnx$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12