1
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
The matrix $$\left[ A \right] = \left[ {\matrix{ 2 & 1 \cr 4 & { - 1} \cr } } \right]$$ is decomposed into a product of lower triangular matrix $$\left[ L \right]$$ and an upper triangular $$\left[ U \right].$$ The properly decomposed $$\left[ L \right]$$ and $$\left[ U \right]$$ matrices respectively are
A
$$\left[ {\matrix{ 1 & 0 \cr 4 & { - 1} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & 1 \cr 0 & { - 2} \cr } } \right]$$
B
$$\left[ {\matrix{ 1 & 0 \cr 2 & 1 \cr } } \right]$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 3} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 & 0 \cr 4 & 1 \cr } } \right]\,$$ and $$\left[ {\matrix{ 2 & 1 \cr 0 & { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ 2 & 0 \cr 4 & { - 3} \cr } } \right]$$ and $$\left[ {\matrix{ 1 & {0.5} \cr 0 & 1 \cr } } \right]$$
2
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
For the set of equations $$${x_1} + 2{x_2} + {x_3} + 4{x_4} = 2,$$$ $$$3{x_1} + 6{x_2} + 3{x_3} + 12{x_4} = 6.$$$
The following statement is true
A
only the trivial solution $${x_1} = {x_2} = {x_3} = {x_4} = 0$$ exist
B
there are no solutions
C
a unique non-trivial solution exist
D
multiple non-trivial solution exist
3
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
If the rank of a $$5x6$$ matrix $$Q$$ is $$4$$ then which one of the following statements is correct?
A
$$Q$$ will have four linearly independent rows and four linearly independent columns
B
$$Q$$ will have four linearly independent rows and five linearly independent columns
C
$$Q{Q^T}$$ will be invertible.
D
$${Q^T}Q$$ will be invertible.
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
Let $$P$$ be $$2x2$$ real orthogonal matrix and $$\overline x $$ is a real vector $${\left[ {\matrix{ {{x_1}} & {{x_2}} \cr } } \right]^T}$$ with length $$\left| {\left| {\overline x } \right|} \right| = {\left( {{x_1}^2 + {x_2}^2} \right)^{1/2}}.$$ Then which one of the following statement is correct?
A
$$\left| {\left| {P\overline x } \right|} \right| \le \left| {\left| {\overline x } \right|} \right|$$ where at least one vector satisfies $$\left| {\left| {P\overline x } \right|} \right| < \left| {\left| {\overline x } \right|} \right|$$
B
$$\left| {\left| {P\overline x } \right|} \right| = \left| {\left| {\overline x } \right|} \right|$$ for all vectors $${\overline x }$$
C
$$\left| {\left| {P\overline x } \right|} \right| \ge \left| {\left| {\overline x } \right|} \right|$$ where at least one vector satisfies $$\left| {\left| {P\overline x } \right|} \right| > \left| {\left| {\overline x } \right|} \right|$$
D
No relationship can be established between $$\left| {\left| {\overline x } \right|} \right|$$ and $$\left| {\left| {P\overline x } \right|} \right|$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12