1
GATE ECE 2024
Numerical
+2
-1.33

A lossless transmission line with characteristic impedance $Z_0 = 50 \Omega$ is terminated with an unknown load. The magnitude of the reflection coefficient is $|\Gamma| = 0.6$. As one moves towards the generator from the load, the maximum value of the input impedance magnitude looking towards the load (in $\Omega$) is _________.

2
GATE ECE 2024
+1
-0.33

For non-degenerately doped n-type silicon, which one of the following plots represents the temperature ($T$) dependence of free electron concentration ($n$)?

A
B
C
D
3
GATE ECE 2024
MCQ (More than One Correct Answer)
+1
-0.33

The free electron concentration profile $n(x)$ in a doped semiconductor at equilibrium is shown in the figure, where the points A, B, and C mark three different positions. Which of the following statements is/are true?

A

For $x$ between B and C, the electron diffusion current is directed from C to B.

B

For $x$ between B and A, the electron drift current is directed from B to A.

C

For $x$ between B and C, the electric field is directed from B to C.

D

For $x$ between B and A, the electric field is directed from A to B.

4
GATE ECE 2024
Numerical
+2
-1.33

Consider a MOS capacitor made with p-type silicon. It has an oxide thickness of 100 nm, a fixed positive oxide charge of $10^{-8}$ C/cm2 at the oxide-silicon interface, and a metal work function of 4.6 eV. Assume that the relative permittivity of the oxide is 4 and the absolute permittivity of free space is $8.85 × 10^{-14}$ F/cm. If the flatband voltage is 0 V, the work function of the p-type silicon (in eV, rounded off to two decimal places) is ______.

GATE ECE Papers
2024
2023
2022
2021
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
EXAM MAP
Medical
NEET