1
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

When both source and listener are approaching each other the observed frequency of sound is given by $$\left(V_L\right.$$ and $$V_S$$ is the velocity of listener and source respectively, $$\mathrm{n}_0=$$ radiated frequency)

A
$$\mathrm{n}=\mathrm{n}_0\left[\frac{\mathrm{V}+\mathrm{V}_{\mathrm{L}}}{\mathrm{V}-\mathrm{V}_{\mathrm{s}}}\right]$$
B
$$\mathrm{n}=\mathrm{n}_0\left[\frac{\mathrm{V}-\mathrm{V}_{\mathrm{L}}}{\mathrm{V}+\mathrm{V}_{\mathrm{s}}}\right]$$
C
$$\mathrm{n}=\mathrm{n}_0\left[\frac{\mathrm{V}-\mathrm{V}_{\mathrm{L}}}{\mathrm{V}-\mathrm{V}_{\mathrm{s}}}\right]$$
D
$$\mathrm{n}=\mathrm{n}_0\left[\frac{\mathrm{V}+\mathrm{V}_{\mathrm{L}}}{\mathrm{V}+\mathrm{V}_{\mathrm{s}}}\right]$$
2
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Equation of simple harmonic progressive wave is given by $$y=\frac{1}{\sqrt{a}} \sin \omega t \pm \frac{1}{\sqrt{b}} \cos \omega t$$ then the resultant amplitude of the wave is $$\left(\cos 90^{\circ}=0\right)$$

A
$$\frac{a \pm b}{a b}$$
B
$$\frac{\sqrt{\mathrm{a}} \pm \sqrt{\mathrm{b}}}{\mathrm{ab}}$$
C
$$\frac{\sqrt{\mathrm{a}} \pm \sqrt{\mathrm{b}}}{\sqrt{\mathrm{ab}}}$$
D
$$\sqrt{\frac{a+b}{a b}}$$
3
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

When a string of length '$$l$$' is divided into three segments of length $$l_1, l_2$$ and $$l_3$$. The fundamental frequencies of three segments are $$\mathrm{n}_1, \mathrm{n}_2$$ and $$\mathrm{n}_3$$ respectively. The original fundamental frequency '$$n$$' of the string is

A
$$\mathrm{n}=\mathrm{n}_1+\mathrm{n}_2+\mathrm{n}_3$$
B
$$\sqrt{\mathrm{n}}=\sqrt{\mathrm{n}_1}+\sqrt{\mathrm{n}_2}+\sqrt{\mathrm{n}_3}$$
C
$$\frac{1}{\mathrm{n}}=\frac{1}{\mathrm{n}_1}+\frac{1}{\mathrm{n}_2}+\frac{1}{\mathrm{n}_3}$$
D
$$\frac{1}{\sqrt{\mathrm{n}}}=\frac{1}{\sqrt{\mathrm{n}_1}}+\frac{1}{\sqrt{\mathrm{n}_2}}+\frac{1}{\sqrt{\mathrm{n}_3}}$$
4
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A closed organ pipe of length '$$L_1$$' and an open organ pipe contain diatomic gases of densities '$$\rho_1$$' and '$$\rho_2$$' respectively. The compressibilities of the gases are same in both pipes, which are vibrating in their first overtone with same frequency. The length of the open organ pipe is (Neglect end correction)

A
$$\frac{4 \mathrm{~L}_1}{3}$$
B
$$\frac{4 L_1}{3} \sqrt{\frac{\rho_1}{\rho_2}}$$
C
$$\frac{4 L_1}{3} \sqrt{\frac{\rho_2}{\rho_1}}$$
D
$$\frac{3}{4 L_1} \sqrt{\frac{\rho_1}{\rho_2}}$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12