The pipe open at both ends and pipe closed at one end have same length and both are vibrating in fundamental mode. Air column vibrating in open pipe has resonance frequency $n_1$ and air column vibrating in closed pipe has resonance frequency $\mathrm{n}_2$, then
Two sound waves having displacements $x_1=2 \sin (1000 \pi t)$ and $x_2=3 \sin (1006 \pi t)$, when interfere, produce
When the listener moves towards stationary source with velocity ' $\mathrm{V}_1$ ', the apparent frequency of emitted note is ' $F_1$ '. When observer moves away from the source with velocity ' $\mathrm{V}_1$ ', apparent frequency is ' $F_2$ '. If V is the velocity of sound in air and $\frac{F_1}{F_2}=2$ then $\frac{V}{V_1}$ is
When the string is stretched between two rigid supports, under certain tension and vibrated