Velocity of sound waves in air is $330 \mathrm{~m} / \mathrm{s}$. For a particular sound wave in air, path difference of 40 cm is equivalent to phase difference of $1.6 \pi$. The frequency of this wave is
An air column in a closed organ pipe vibrating in unison with a fork, produces second overtone. The vibrating air column has
Sound waves of frequency $$600 \mathrm{~Hz}$$ fall normally on a perfectly reflecting wall. The shortest distance from the wall at which all particles will have maximum amplitude of vibration is (speed of sound $$=300 \mathrm{~ms}^{-1}$$ )
A wire $$P Q$$ has length $$4.8 \mathrm{~m}$$ and mass $$0.06 \mathrm{~kg}$$. Another wire QR has length $$2.56 \mathrm{~m}$$ and mass $$0.2 \mathrm{~kg}$$. Both wires have same radii and are joined as a single wire. This wire is under tension of $$80 \mathrm{~N}$$. A wave pulse of amplitude $$3.5 \mathrm{~cm}$$ is sent along the wire $$\mathrm{PQ}$$ from end $$\mathrm{P}$$. the time taken by the wave pulse to travel along the wire from point P to R is ?