Two conducting circular loops of radii '$$R_1$$' and '$$R_2$$' are placed in the same plane with their centres coinciding. If $$R_1>R_2$$, the mutual inductance $$M$$ between them will be directly proportional to
If current '$$I$$' is flowing in the closed circuit with collective resistance '$$R$$', the rate of production of heat energy in the loop as we pull it along with a constant speed '$$\mathrm{V}$$' is ( $$\mathrm{L}=$$ length of conductor, $$\mathrm{B}=$$ magnetic field)
Two coils $$\mathrm{A}$$ and $$\mathrm{B}$$ have mutual inductance 0.008 $$\mathrm{H}$$. The current changes in the coil A, according to the equation $$\mathrm{I}=\mathrm{I}_{\mathrm{m}} \sin \omega \mathrm{t}$$, where $$\mathrm{I}_{\mathrm{m}}=5 \mathrm{~A}$$ and $$\omega=200 \pi ~\mathrm{rad} ~\mathrm{s}^{-1}$$. The maximum value of the e.m.f. induced in the coil $$B$$ in volt is
The mutual inductance (M) of the two coils is $$3 ~\mathrm{H}$$. The self inductances of the coils are $$4 ~\mathrm{H}$$ and $$9 ~\mathrm{H}$$ respectively. The coefficient of coupling between the coils is