1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0
The area of the region bounded by hyperbola $x^2-y^2=9$ and its latus rectum is
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0
The area bounded by the curve $$y=|x-2|, x=1, x=3$$ and $$X$$-axis is
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $$\mathrm{f}^{\prime}(x)=\tan ^{-1}(\sec x+\tan x),-\frac{\pi}{2} < x < \frac{\pi}{2}$$ and $$f(0)=0$$, then $$\mathrm{f}(1)$$ is
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0
The area bounded by the curves $$y=(x-1)^2, y=(x+1)^2$$ and $$y=\frac{1}{4}$$ is
Questions Asked from Area Under The Curves (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
MHT CET 2024 16th May Evening Shift (1)
MHT CET 2024 16th May Morning Shift (1)
MHT CET 2024 15th May Evening Shift (1)
MHT CET 2024 15th May Morning Shift (1)
MHT CET 2024 11th May Evening Shift (1)
MHT CET 2024 11th May Morning Shift (1)
MHT CET 2024 10th May Evening Shift (1)
MHT CET 2024 10th May Morning Shift (1)
MHT CET 2024 9th May Evening Shift (1)
MHT CET 2024 9th May Morning Shift (1)
MHT CET 2024 4th May Evening Shift (1)
MHT CET 2024 4th May Morning Shift (1)
MHT CET 2024 3rd May Evening Shift (1)
MHT CET 2024 3rd May Morning Shift (1)
MHT CET 2024 2nd May Evening Shift (1)
MHT CET 2024 2nd May Morning Shift (1)
MHT CET 2023 14th May Evening Shift (1)
MHT CET 2023 14th May Morning Shift (2)
MHT CET 2023 13th May Evening Shift (1)
MHT CET 2023 13th May Morning Shift (1)
MHT CET 2023 12th May Evening Shift (1)
MHT CET 2023 12th May Morning Shift (1)
MHT CET 2023 11th May Evening Shift (1)
MHT CET 2023 11th May Morning Shift (1)
MHT CET 2023 10th May Evening Shift (1)
MHT CET 2023 10th May Morning Shift (1)
MHT CET 2023 9th May Evening Shift (2)
MHT CET 2023 9th May Morning Shift (1)
MHT CET 2022 11th August Evening Shift (1)
MHT CET 2021 24th September Evening Shift (1)
MHT CET 2021 24th September Morning Shift (1)
MHT CET 2021 23rd September Evening Shift (1)
MHT CET 2021 23th September Morning Shift (1)
MHT CET 2021 22th September Evening Shift (1)
MHT CET 2021 22th September Morning Shift (1)
MHT CET 2021 21th September Evening Shift (1)
MHT CET 2021 21th September Morning Shift (1)
MHT CET 2021 20th September Evening Shift (1)
MHT CET 2021 20th September Morning Shift (1)
MHT CET 2020 19th October Evening Shift (1)
MHT CET 2020 16th October Evening Shift (1)
MHT CET 2020 16th October Morning Shift (1)
MHT CET 2019 3rd May Morning Shift (1)
MHT CET 2019 2nd May Evening Shift (1)
MHT CET 2019 2nd May Morning Shift (1)
MHT CET Subjects
Physics
Mechanics
Units & Measurement and Dimensions Vector Algebra Motion Laws of Motion Circular Motion Work, Energy and Power Center of Mass and Collision Rotational Motion Gravitation Simple Harmonic Motion Fluid Mechanics Elasticity Waves Heat and Thermodynamics
Optics
Electromagnetism
Electrostatics Current Electricity Capacitor Moving Charges and Magnetism Magnetism and Matter Electromagnetic Waves Electromagnetic Induction Alternating Current
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Atomic Structure States of Matter Thermodynamics Chemical Equilibrium Ionic Equilibrium Liquid Solution Redox Reactions Surface Chemistry Solid State Electrochemistry Chemical Kinetics Nuclear Chemistry
Inorganic Chemistry
Periodic Table and Periodicity Chemical Bonding and Molecular Structure Metallurgy Hydrogen and It's Compounds s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Environmental Chemistry
Organic Chemistry
Mathematics
Algebra
Sets and Relations Logarithms Quadratic Equations Sequences and Series Binomial Theorem Permutations and Combinations Probability Vector Algebra Three Dimensional Geometry Matrices and Determinants Statistics Mathematical Reasoning Linear Programming Complex Numbers
Trigonometry
Trigonometric Ratios & Identities Trigonometric Equations Inverse Trigonometric Functions Properties of Triangles
Calculus
Functions Limits, Continuity and Differentiability Differentiation Application of Derivatives Indefinite Integration Definite Integration Area Under The Curves Differential Equations
Coordinate Geometry