1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units) bounded by the curves $y=\sqrt{x}, 2 y-x+3=0, X$-axis and lying in the first quadrant is

A
36
B
18
C
$\frac{27}{4}$
D
9
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area of the region bounded by hyperbola $x^2-y^2=9$ and its latus rectum is

A
$9[\sqrt{2}-\log (\sqrt{2}+1)]$ sq. units
B
$4[\sqrt{2}-\log (\sqrt{2}+1)]$ sq. units
C
$3[\sqrt{2}-\log (\sqrt{2}+1)]$ sq. units
D
$18[\sqrt{2}-\log (\sqrt{2}+1)]$ sq. units
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area bounded by the curve $$y=|x-2|, x=1, x=3$$ and $$X$$-axis is

A
3 sq. units
B
2 sq. units
C
1 sq. units
D
4 sq. units
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\mathrm{f}^{\prime}(x)=\tan ^{-1}(\sec x+\tan x),-\frac{\pi}{2} < x < \frac{\pi}{2}$$ and $$f(0)=0$$, then $$\mathrm{f}(1)$$ is

A
$$\frac{\pi+1}{4}$$
B
$$\frac{\pi+2}{4}$$
C
$$\pi+\frac{1}{4}$$
D
$$\frac{\pi-1}{4}$$
MHT CET Subjects
EXAM MAP