If a lighter body of mass '$$\mathrm{M}_1$$' and velocity '$$\mathrm{V}_1$$' and a heavy body (mass $$M_2$$ and velocity $$V_2$$ ) have the same kinetic energy then

A stone is projected vertically upwards with speed '$$v$$'. Another stone of same mass is projected at an angle of $$60^{\circ}$$ with the vertical with the same speed '$$v$$'. The ratio of their potential energies at the highest points of their journey is $$\left[\sin 30^{\circ}=\cos 60^{\circ}=0.5, \cos 30^{\circ}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}\right]$$

Three bodies P, Q and R have masses 'm' kg, '2m' kg and '3m' kg respectively. If all the bodies have equal kinetic energy, then greater momentum will be for body/bodies.

A sphere of mass 25 gram is placed on a vertical spring. It is compressed by $$0.2 \mathrm{~m}$$ using a force $$5 \mathrm{~N}$$. When the spring is released, the sphere will reach a height of $$\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\right)$$ $$2 \mathrm{~m}$$