1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If ' $l$ ' is the length of pipe, ' $r$ ' is the internal radius of the pipe and ' $v$ ' is the velocity of sound in air then fundamental frequency of open pipe is

A
$\frac{\mathrm{V}}{2(l+1 \cdot 2 \mathrm{r})}$
B
$\frac{\mathrm{V}}{(l+1 \cdot 2 \mathrm{r})}$
C
$\frac{\mathrm{V}}{(l+0.3 \mathrm{r})}$
D
$\frac{\mathrm{V}}{(l+0 \cdot 6 \mathrm{r})}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A violin emits sound waves of frequency ' $n_1$ ' under tension T. When tension is increased by $44 \%$, keeping the length and mass per unit length constant, frequency of sound waves becomes ' $\mathrm{n}_2$ '. The ratio of frequency ' $\mathrm{n}_2$ ' to frequency ' $n_1$ ' is

A
$5: 6$
B
$6: 7$
C
$6: 5$
D
$7: 6$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+1
-0

An observer moves towards a stationary source of sound with a velocity of one-fifth of the velocity of sound. The percentage increase in the apparent frequency is

A
$5 \%$
B
$10 \%$
C
$20 \%$
D
$25 \%$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The path difference between two waves $\mathrm{Y}_1=\mathrm{a}_1 \sin \left(\omega \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}\right)$ and $\mathrm{Y}_2=\mathrm{a}_2 \cos \left(\omega \mathrm{t}-\frac{2 \pi \mathrm{x}}{\lambda}+\phi\right)$ is

A
$\frac{\lambda \phi}{2 \pi}$
B
$\frac{\lambda}{2 \pi}\left(\phi+\frac{\pi}{2}\right)$
C
$\frac{2 \pi}{\lambda}\left(\phi-\frac{\pi}{2}\right)$
D
$\frac{2 \pi}{\lambda} \phi$
MHT CET Subjects
EXAM MAP