A transverse wave $$\mathrm{Y}=2 \sin (0.01 \mathrm{x}+30 \mathrm{t})$$ moves on a stretched string from one end to another end in 0.5 second. If $$x$$ and $$y$$ are in $$\mathrm{cm}$$ and $$t$$ in second, then the length of the string is
The fundamental frequency of air column in pipe 'A' closed at one end is in unison with second overtone of an air column in pipe 'B' open at both ends. The ratio of length of air column in pipe '$$\mathrm{A}$$' to that of air column in pipe '$$\mathrm{B}$$' is
The equation of wave is $$Y=6 \sin$$ $$\left(12 \pi t-0.02 \pi x+\frac{\pi}{3}\right)$$ where '$$x$$' is in $$m$$ and '$$t$$' in $$\mathrm{s}$$. The velocity of the wave is
Two uniform wires of same material are vibrating under the same tension. If the first overtone of first wire is equal to the $$2^{\text {nd }}$$ overtone of $$2^{\text {nd }}$$ wire and radius of the first wire is twice the radius of the $$2^{\text {nd }}$$ wire then the ratio of length of first wire to $$2^{\text {nd }}$$ wire is