1
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A straight line through the origin $O$ meets the line $3 y=10-4 x$ and $8 x+6 y+5=0$ at the points $A$ and B respectively. Then O divides the segment $A B$ in the ratio

A
$4: 1$
B
$2: 3$
C
$1: 5$
D
$1: 3$
2
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0
The perpendicular distance between the lines given by $(x-2 y+1)^2+\mathrm{k}(x-2 y+1)=0$ is $\sqrt{5}$, then $\mathrm{k}=$
A
5
B
2
C
4
D
6
3
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
The point of intersection of the diagonals of the rectangle whose sides are contained in the lines $x=8, x=10, y=11$ and $y=12$ is
A
$\left(\frac{9}{2}, 23\right)$
B
$\left(9, \frac{23}{2}\right)$
C
$\left(7, \frac{21}{2}\right)$
D
$\left(\frac{7}{2}, 21\right)$
4
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
If $m_1$ and $m_2$ are the slopes of the lines represented by $a x^2+2 h x y+b y^2=0$ satisfying the condition $16 \mathrm{~h}^2=25 \mathrm{ab}$, then ............ .
A
$\mathrm{m}_1=\mathrm{m}_2^2$
B
$m_1=4 m_2$
C
$\left|m_1-m_2\right|=2$
D
$\mathrm{m}_1 \mathrm{~m}_2=1$
MHT CET Subjects
EXAM MAP