1
MHT CET 2021 21th September Morning Shift
+2
-0

If the two lines given by $$a x^2+2 h x y+b y^2=0$$ make inclinations $$\propto$$ and $$\beta$$, then $$\tan (\alpha+\beta)=$$

A
$$\frac{h}{a+b}$$
B
$$\frac{2 h}{a+b}$$
C
$$\frac{\mathrm{h}}{\mathrm{a}-\mathrm{b}}$$
D
$$\frac{2 h}{a-b}$$
2
MHT CET 2021 21th September Morning Shift
+2
-0

If the polar co-ordinates of a point are $$\left(\sqrt{2}, \frac{\pi}{4}\right)$$, then its Cartesian co-ordinates are

A
$$(\sqrt{2}, 2)$$
B
$$(1,-1)$$
C
$$(2, \sqrt{2})$$
D
$$(1,1)$$
3
MHT CET 2021 21th September Morning Shift
+2
-0

The equation of a line passing through $$(\mathrm{p} \cos \propto, \mathrm{p} \sin \propto)$$ ) and making an angle $$(90+\propto)$$ with positive direction of $$\mathrm{X}$$-axis is

A
$$\mathrm{x} \cos \propto-\mathrm{y} \sin \propto=2 \mathrm{p}$$
B
$$\mathrm{x} \sin \propto+\mathrm{y} \cos \propto=\mathrm{p}$$
C
$$\mathrm{x} \cos \propto+\mathrm{y} \sin \propto=\mathrm{p}$$
D
$$\mathrm{x} \cos \propto+\mathrm{y} \sin \propto=3 \mathrm{p}$$
4
MHT CET 2021 21th September Morning Shift
+2
-0

The product of the perpendicular distances from $$(2,-1)$$ to the pair of lines $$2 x^2-5 x y+2 y^2=0$$ is

A
$$\frac{9}{\sqrt{5}}$$ units
B
$$\frac{1}{\sqrt{5}}$$ units
C
4 units
D
9 units
MHT CET Subjects
Physics
Mechanics
Optics
Electromagnetism
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Calculus
Coordinate Geometry
EXAM MAP
Joint Entrance Examination