1
MHT CET 2021 21th September Morning Shift
+1
-0

A particle of mass '$$m$$' collides with another stationary particle of mass '$$M$$'. A particle of mass '$$\mathrm{m}$$' stops just after collision. The coefficient of restitution is

A
$$\frac{M}{m}$$
B
$$\frac{m+M}{M}$$
C
$$\frac{M-m}{M+m}$$
D
$$\frac{\mathrm{m}}{\mathrm{M}}$$
2
MHT CET 2021 20th September Evening Shift
+1
-0

Two masses '$$m_{\mathrm{a}}$$' and '$$\mathrm{m}_{\mathrm{b}}$$' moving with velocities '$$v_{\mathrm{a}}$$' and '$$v_{\mathrm{b}}$$' opposite directions collide elastically. Alter the collision '$$m_a$$' and '$$m_b$$' move with velocities and '$$v_{\mathrm{b}}$$' and '$$v_a$$' respectively, then the ratio $$\mathrm{m_a:m_b}$$ is

A
$$\frac{v_a+v_b}{v_a-v_b}$$
B
$$\frac{1}{2}$$
C
1
D
$$\frac{v_a-v_b}{v_a+v_b}$$
3
MHT CET 2020 16th October Morning Shift
+1
-0

A bullet of mass $$m$$ moving with velocity $$v$$ is fired into a wooden block of mass $$M$$, If the bullet remains embedded in the block, the final velocity of the system is

A
$$\frac{m+M}{m}$$
B
$$\frac{M+m}{m v}$$
C
$$\frac{m v}{m+M}$$
D
$$\frac{v}{m(M+m)}$$
EXAM MAP
Medical
NEET