1
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Which of the following languages is regular?
A
$$\left\{ {w{w^R}} \right.\left| {w \in \left\{ {0,\,1} \right\}\left. {^ + } \right\}} \right.$$
B
$$\left\{ {w{w^R}} \right.x\left| {x,w \in \left\{ {0,\,1} \right\}\left. {^ + } \right\}} \right.$$
C
$$\left\{ {wx{w^R}} \right.\left| {x,w \in \left\{ {0,\,1} \right\}\left. {^ + } \right\}} \right.$$
D
$$\left\{ {xw{w^R}} \right.\left| {x,w \in \left\{ {0,\,1} \right\}\left. {^ + } \right\}} \right.$$
2
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider the following finite state automation GATE CSE 2007 Theory of Computation - Finite Automata and Regular Language Question 44 English

The language accepted by this automation is given by the regular expression

A
$${b^ * }a{b^ * }a{b^ * }a{b^ * }$$
B
$${\left( {a + b} \right)^ * }$$
C
$${b^ * }a{\left( {a + b} \right)^ * }$$
D
$${b^ * }a{b^ * }a{b^ * }$$
3
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Consider the following finite state automation GATE CSE 2007 Theory of Computation - Finite Automata and Regular Language Question 43 English

The minimum state automation equivalent to the above $$FSA$$ has the following number of states

A
$$1$$
B
$$2$$
C
$$3$$
D
$$4$$
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
If $$s$$ is a string over $${\left( {0 + 1} \right)^ * }$$ then let $${n_0}\left( s \right)$$ denote the number of $$0'$$ s in $$s$$ and $${n_1}\left( s \right)$$ the number of $$1'$$s in $$s.$$ Which one of the following languages is not regular?
A
$$L = \left\{ {s \in {{\left( {0 + 1} \right)}^ * }\left| {{n_0}\left( s \right)\,\,} \right.} \right.$$ is a $$3$$-digit prime$$\left. \, \right\}$$
B
$$L = \left\{ {s \in {{\left( {0 + 1} \right)}^ * }\left| {\,\,} \right.} \right.$$ for every prefix $$s'$$ of $$s.$$ $$\,\left| {{n_0}\left( {{s^,}} \right) - {n_1}\left( {{s^,}} \right)\left| { \le \left. 2 \right\}} \right.} \right.$$
C
$$L = \left\{ {s \in {{\left( {0 + 1} \right)}^*}\left\| {{n_0}\left( s \right) - {n_1}\left( s \right)\left| { \le \left. 4 \right\}} \right.} \right.} \right.$$
D
$$L = \left\{ {s \in {{\left( {0 + 1} \right)}^ * }} \right.\left| {{n_0}\left( s \right)} \right.$$ mod $$7 = {n_1}\left( s \right)$$ mod $$5 = \left. 0 \right\}$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN