1
GATE CSE 2020
Numerical
+2
-0.67
Consider the following language.

L = {x $$\in$$ {a, b}* | number of a’s in x is divisible by 2 but not divisible by 3}

The minimum number of states in a DFA that accepts L is ______.
2
GATE CSE 2018
+2
-0.6
Let $$N$$ be an $$NFA$$ with $$n$$ states. Let $$k$$ be the number of states of a minimal $$DFA$$ which is equivalent to $$N.$$ Which one of the following is necessarily true?
A
$$k \ge {2^n}$$
B
$$k \ge n$$
C
$$k \le {n^2}$$
D
$$k \le {2^n}$$
3
GATE CSE 2018
Numerical
+2
-0
Given a language $$𝐿,$$ define $${L^i}$$ as follows: $${L^0} = \left\{ \varepsilon \right\}$$
$${L^i} = {L^{i - 1}}.\,\,L$$ for all $$i > 0$$

The order of a language $$L$$ is defined as the smallest k such that $${L^k} = {L^{k + 1}}.$$ Consider the language $${L_1}$$ (over alphabet $$0$$) accepted by the following automaton.

The order of $${L_1}$$ is _____.

4
GATE CSE 2016 Set 2
+2
-0.6
Consider the following two statements:

$$\,\,\,\,\,\,\,{\rm I}.\,\,\,\,\,$$ If all states of an $$NFA$$ are accepting states then the language accepted by the
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$NFA$$ is $$\sum {^ * } .$$
$$\,\,\,\,\,{\rm I}{\rm I}.\,\,\,\,\,$$ There exists a regular language $$A$$ such that for all languages $$B,A \cap B$$ is
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ regular.

Which one of the following is CORRECT?

A
Only $${\rm I}$$ is true
B
Only $${\rm II}$$ is true
C
Both $${\rm I}$$ and $${\rm II}$$ are true
D
Both $${\rm I}$$ and $${\rm II}$$ are false
GATE CSE Subjects
EXAM MAP
Medical
NEET