1

GATE CSE 2012

MCQ (Single Correct Answer)

+2

-0.6

Consider the set of strings on $$\left\{ {0,1} \right\}$$ in which, every substring of $$3$$ symbols has at most two zeros. For example, $$001110$$ and $$011001$$ are in the language, but $$100010$$ is not. All strings of length less than $$3$$ are also in the language. A partially completed $$DFA$$ that accepts this language is shown below.

The missing arcs in the $$DFA$$ are

2

GATE CSE 2011

MCQ (Single Correct Answer)

+2

-0.6

Definition of the language $$L$$ with alphabet $$\left\{ a \right\}$$ is given as following. $$L = \left\{ {{a^{nk}}} \right.\left| {k > 0,\,n} \right.$$ is a positive integer constant$$\left. \, \right\}$$

What is the minimum number of states needed in a $$DFA$$ to recognize $$L$$?

3

GATE CSE 2010

MCQ (Single Correct Answer)

+2

-0.6

Let $$L = \left\{ {w \in {{\left( {0 + 1} \right)}^ * }\left| {\,w} \right.} \right.$$ has even number of $$\,\left. {1's} \right\},$$ i.e $$L$$ is the set of all bit strings with even number of $$1's.$$ which one of rhe regular expression below represents $$L.$$

4

GATE CSE 2010

MCQ (Single Correct Answer)

+2

-0.6

Let $$w$$ be any string of length $$n$$ in $${\left\{ {0,1} \right\}^ * }$$. Let $$L$$ be the set of all substrings of $$w.$$ What is the minimum number of states in a non-deterministic finite automation that accepts $$L$$?

Questions Asked from Finite Automata and Regular Language (Marks 2)

Number in Brackets after Paper Indicates No. of Questions

GATE CSE 2024 Set 2 (2)
GATE CSE 2024 Set 1 (2)
GATE CSE 2023 (1)
GATE CSE 2021 Set 1 (1)
GATE CSE 2020 (1)
GATE CSE 2018 (2)
GATE CSE 2016 Set 2 (2)
GATE CSE 2016 Set 1 (1)
GATE CSE 2015 Set 2 (3)
GATE CSE 2015 Set 1 (2)
GATE CSE 2014 Set 2 (2)
GATE CSE 2014 Set 1 (1)
GATE CSE 2013 (1)
GATE CSE 2012 (1)
GATE CSE 2011 (1)
GATE CSE 2010 (2)
GATE CSE 2009 (2)
GATE CSE 2008 (3)
GATE CSE 2007 (4)
GATE CSE 2006 (2)
GATE CSE 2005 (1)
GATE CSE 2004 (1)
GATE CSE 2003 (2)
GATE CSE 2002 (2)
GATE CSE 2001 (2)
GATE CSE 2000 (1)
GATE CSE 1998 (1)
GATE CSE 1997 (1)
GATE CSE 1995 (2)
GATE CSE 1994 (2)
GATE CSE 1992 (2)
GATE CSE 1991 (1)
GATE CSE 1990 (1)
GATE CSE 1989 (1)

GATE CSE Subjects

Theory of Computation

Operating Systems

Algorithms

Database Management System

Data Structures

Computer Networks

Software Engineering

Compiler Design

Web Technologies

General Aptitude

Discrete Mathematics

Programming Languages