1
GATE CSE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Consider the transition diagram of a $$PDA$$ given below with input alphabet $$\sum {\, = \left\{ {a,b} \right\}} $$ and stack alphabet $$\Gamma = \left\{ {X,Z} \right\}.$$ $$Z$$ is the initial stack symbol. Let $$L$$ denote the language accepted by the $$PDA.$$ GATE CSE 2016 Set 1 Theory of Computation - Finite Automata and Regular Language Question 29 English

Which one of the following is TRUE?

A
$$L = \left\{ {{a^n}{b^n}|n \ge 0} \right\}$$ and is not accepted by any finite automata
B
$$L = \left\{ {{a^n}|n \ge 0} \right\} \cup \left\{ {{a^n}{b^n}|n \ge 0} \right\}$$ and is not accepted by any deterministic $$PDA$$
C
$$L$$ is not accepted by any Turing machine that halts on every input
D
$$L = \left\{ {{a^n}|n \ge 0} \right\} \cup \left\{ {{a^n}{b^n}|n \ge 0} \right\}$$ and is deterministic context-free
2
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Consider the NPDA $$\left\langle {Q = \left\{ {{q_0},{q_1},{q_2}} \right\}} \right.,$$ $$\Sigma = \left \{ 0, 1 \right \},$$ $$\Gamma = \left \{ 0, 1, \perp \right \},$$ $$\delta, q_{0}, \perp,$$ $$\left. {F = \left\{ {{q_2}} \right\}} \right\rangle $$ , where (as per usual convention) $$Q$$ is the set of states, $$\Sigma$$ is the input alphabet, $$\Gamma$$ is the stack alphabet, $$\delta $$ is the state transition function q0 is the initial state, $$\perp$$ is the initial stack symbol, and F is the set of accepting states. The state transition is as follows: GATE CSE 2015 Set 1 Theory of Computation - Finite Automata and Regular Language Question 35 English

Which one of the following sequences must follow the string 101100 so that the overall string is accepted by the automaton?

A
10110
B
10010
C
01010
D
01001
3
GATE CSE 2015 Set 1
Numerical
+2
-0
GATE CSE 2015 Set 1 Theory of Computation - Finite Automata and Regular Language Question 36 English

Consider the DFAs M and N given above. The number of states in a minimal DFA that accepts the language L(M) ∩ L(N) is___________.

Your input ____
4
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Consider the alphabet $$\sum { = \left\{ {0,1} \right\},} $$ the null/empty string $$\lambda $$ and the sets of strings $${X_0},\,{X_1},$$ and $${X_2}$$ generated by the corresponding non-terminals of a regular grammar. $${X_0},\,\,{X_1},\,$$ and $${X_2}$$ are related as follows. $$$\eqalign{ & {X_0} = 1\,X{}_1 \cr & {X_1} = 0{X_1} + 1\,{X_2} \cr & {X_2} = 0\,{X_1} + \left\{ \lambda \right\} \cr} $$$
Which one of the following choices precisely represents the strings in $${X_0}$$?
A
$$10\left( {{0^ * } + {{\left( {10} \right)}^ * }} \right)1$$
B
$$10\left( {{0^ * } + \left( {10} \right){}^ * } \right){}^ * 1$$
C
$$1\left( {0 + 10} \right){}^ * 1$$
D
$$10\left( {0 + 10} \right){}^ * 1 + 110\left( {0 + 10} \right){}^ * 1$$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12