1
GATE EE 2016 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The value of the integral $$\oint\limits_c {{{2z + 5} \over {\left( {z - {1 \over 2}} \right)\left( {{z^2} - 4z + 5} \right)}}} dz$$ over the contour $$\left| z \right| = 1,$$ taken in the anti-clockwise direction, would be
2
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let $$S$$ be the set of points in the complex plane corresponding to the unit circle. $$\left( {i.e.,\,\,S = \left\{ {z:\left| z \right| = 1} \right\}} \right.$$ Consider the function $$f\left( z \right) = z{z^ * }$$ where $${z^ * }$$ denotes the complex conjugate of $$z.$$ The $$f(z)$$ maps $$S$$ to which one of the following in the complex plane?
3
GATE EE 2013
MCQ (Single Correct Answer)
+2
-0.6
$$\oint {{{{z^2} - 4} \over {{z^2} + 4}}} dz\,\,$$ evaluated anticlockwise around the circular $$\left| {z - i} \right| = 2,$$ where $$i = \sqrt { - 1} $$, is
4
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
Given $$f\left( z \right) = {1 \over {z + 1}} - {2 \over {z + 3}}.$$ If $$C$$ is a counterclockwise path in the $$z$$-plane such that
$$\left| {z + 1} \right| = 1,$$ the value of $${1 \over {2\,\pi \,j}}\oint\limits_c {f\left( z \right)dz} $$ is
$$\left| {z + 1} \right| = 1,$$ the value of $${1 \over {2\,\pi \,j}}\oint\limits_c {f\left( z \right)dz} $$ is
Questions Asked from Complex Variable (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics