1
GATE EE 2007
+2
-0.6
The system shown in figure below
can be reduced to the form
With
A
$$X = {C_0}s + {C_1},\,\,Y = 1/\left( {{s^2} + {a_0}s + {a_1}} \right),\,z = {b_0}s + {b_1}$$
B
$$X = 1,\,\,Y = \left( {{c_0}s + {c_1}} \right)/\left( {{s^2} + {a_0}s + {a_1}} \right),\,z = {b_0}s + {b_1}$$
C
$$X = {C_1}s + {C_0},\,\,Y = \left( {{b_1}s + {b_0}} \right)/\left( {{s^2} + {a_1}s + {a_0}} \right),\,z = 1$$
D
$$X = {C_1}s + {C_0},\,\,Y = 1/\left( {{s^2} + {a_1}s + {a_0}} \right),\,z = {b_1}s + {b_0}$$
2
GATE EE 2004
+2
-0.6
For the block diagram shown in figure, the transfer function $${{C\left( s \right)} \over {R\left( s \right)}}$$ is equal to
A
$${{{s^2} + 1} \over {{s^2}}}$$
B
$${{{s^2} + s + 1} \over {{s^2}}}$$
C
$${{{s^2} + s + 1} \over s}$$
D
$${1 \over {{s^2} + s + 1}}$$
3
GATE EE 2003
+2
-0.6
The block diagram of a control system is shown in Fig. The transfer function $$G(s) = Y(s)/U(s)$$ of the system is
A
$${1 \over {18\left( {1 + {s \over {12}}} \right)\left( {1 + {s \over 3}} \right)}}$$
B
$${1 \over {27\left( {1 + {s \over 6}} \right)\left( {1 + {s \over 9}} \right)}}$$
C
$${1 \over {27\left( {1 + {s \over {12}}} \right)\left( {1 + {s \over 9}} \right)}}$$
D
$${1 \over {27\left( {1 + {s \over 9}} \right)\left( {1 + {s \over 3}} \right)}}$$
4
GATE EE 1998
+2
-0.6
For block diagram shown in Figure $$C(s)/R(s)$$ is given by
A
$${{{G_1}{G_2}{G_3}} \over {1 + {H_2}{G_2}{G_3} + {H_1}{G_1}{G_2}}}$$
B
$${{{G_1}{G_2}{G_3}} \over {1 + {G_1}{G_2}{G_3} + {H_1}{H_2}}}$$
C
$${{{G_1}{G_2}{G_3}} \over {1 + {G_1}{G_2}{G_3}{H_1} + {G_1}{G_2}{G_3}{H_2}}}$$
D
$${{{G_1}{G_2}{G_3}} \over {1 + {G_1}{G_2}{G_3}{H_1}}}$$
EXAM MAP
Medical
NEET