1
GATE CSE 2011
+1
-0.3
The simplified $$SOP$$ (Sum of product) form of the Boolean expression
$$\left( {P + \overline Q + \overline R } \right).\left( {P + \overline Q + R} \right).\left( {P + Q + \overline R } \right)$$ is
A
$$\left( {\overline P .Q + \overline R } \right)$$
B
$$\left( {P + \overline Q .\overline R } \right)$$
C
$$\left( {\overline P .Q + R} \right)$$
D
$$\left( {P.Q + R} \right)$$
2
GATE CSE 2010
+1
-0.3
The minters expansion of $$f\left( {P,Q,R} \right) = PQ + Q\overline R + P\overline R$$ is
A
$${m_2} + {m_4} + {m_6} + {m_7}$$
B
$${m_0} + {m_1} + {m_3} + {m_5}$$
C
$${m_0} + {m_1} + {m_6} + {m_7}$$
D
$${m_2} + {m_3} + {m_4} + {m_5}$$
3
GATE CSE 2009
+1
-0.3
What is the minimum number of gates required to implement the Boolean function $$(AB+C)$$ if we have to use only $$2$$-input NOR gates?
A
$$2$$
B
$$3$$
C
$$4$$
D
$$5$$
4
GATE CSE 2008
+1
-0.3
Given $${f_1},$$ $${f_3},$$ and $$f$$ in canonical sum of products form (in decimal) for the circuit. $${f_1} = \sum {m\left( {4,5,6,7,8} \right)}$$$$${f_3} = \sum {m\left( {1,6,15} \right)}$$$ $$f = \sum {m\left( {1,6,8,15} \right)}$$\$
Then $${f_2}$$ is
A
$$\sum {m\left( {4,6} \right)}$$
B
$$\sum {m\left( {4,8} \right)}$$
C
$$\sum {m\left( {6,8} \right)}$$
D
$$\sum {m\left( {4,6,8} \right)}$$
GATE CSE Subjects
EXAM MAP
Medical
NEET