1
GATE EE 2010
+1
-0.3
The period of the signal $$x\left(t\right)=8\sin\left(0.8\mathrm{πt}+\frac{\mathrm\pi}4\right)$$ is
A
$$0.4\;\mathrm\pi\;\mathrm s$$
B
$$0.8\;\mathrm\pi\;\mathrm s$$
C
1.25 s
D
2.5 s
2
GATE EE 2006
+1
-0.3
$$x(t)$$ is a real valued function of a real variable with period $$T.$$ Its trigonometric. Fourier Series expansion contains no terms of frequency
$$\omega = 2\pi \left( {2k} \right)/T;\,\,k = 1,2,........$$ Also, no sine terms are present. Then $$x(t)$$ satisfies the equation
A
$$x\left( t \right) = - x\left( {t - T} \right)$$
B
$$x\left( t \right) = x\left( {T - t} \right) = - x\left( { - t} \right)$$
C
$$x\left( t \right) = x\left( {T - t} \right) = - x\left( {t - T/2} \right)$$
D
$$x\left( t \right) = x\left( {t - T} \right) = - x\left( {t - T/2} \right)$$
3
GATE EE 2005
+1
-0.3
The RMS value of the voltage v(t) = 3 + 4cos(3t) is
A
$$\sqrt{17}\;V$$
B
5 V
C
7 V
D
$$\left(3\;+\;2\sqrt2\right)\;\mathrm V$$
4
GATE EE 2002
+1
-0.3
Fourier Series for the waveform, $$f(t)$$ shown in Fig. is A
$${8 \over {{\pi ^2}}}\left[ {\sin \left( {\pi t} \right) + {1 \over 9}\sin \left( {3\,\pi t} \right) + {1 \over {25}}\sin \left( {5\,\pi t} \right) + ........} \right]$$
B
$${8 \over {{\pi ^2}}}\left[ {\sin \left( {\pi t} \right) - {1 \over 9}\cos \left( {3\,\pi t} \right) + {1 \over {25}}\sin \left( {5\,\pi t} \right) + ........} \right]$$
C
$${8 \over {{\pi ^2}}}\left[ {\cos \left( {\pi t} \right) + {1 \over 9}\cos \left( {3\,\pi t} \right) + {1 \over {25}}\cos \left( {5\,\pi t} \right) + ........} \right]$$
D
$${8 \over {{\pi ^2}}}\left[ {\cos \left( {\pi t} \right) - {1 \over 9}\sin \left( {3\,\pi t} \right) + {1 \over {25}}\sin \left( {5\,\pi t} \right) + ........} \right]$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement
EXAM MAP
Joint Entrance Examination