1
GATE EE 2023
MCQ (Single Correct Answer)
+1
-0.33

The Fourier transform $$X(\omega)$$ of the signal $$x(t)$$ is given by

$$X(\omega ) = 1$$, for $$|\omega | < {W_0}$$

$$ = 0$$, for $$|\omega | > {W_0}$$

Which one of the following statements is true?

A
$$x(t)$$ tends to be an impulse as $${W_0} \to \infty $$.
B
$$x(0)$$ decreases as $${W_0}$$ increases.
C
At $$t = {\pi \over {2{W_0}}},x(t) = - {1 \over \pi }$$
D
At $$t = {\pi \over {2{W_0}}},x(t) = {1 \over \pi }$$
2
GATE EE 2017 Set 1
Numerical
+1
-0
Consider $$$g\left(t\right)=\left\{\begin{array}{l}t-\left\lfloor t\right\rfloor,\\t-\left\lceil t\right\rceil,\end{array}\right.\left.\begin{array}{r}t\geq0\\otherwise\end{array}\right\}$$$ where $$t\;\in\;R$$
Here, $$\left\lfloor t\right\rfloor$$ represents the largest integer less than or equal to t and $$\left\lceil t\right\rceil$$ denotes the smallest integer greater than or equal to t. The coefficient of the second harmonic component of the Fourier series representing g(t) is _________.
Your input ____
3
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
For a periodic square wave, which one of the following statements is TRUE?
A
The Fourier series coefficients do not exist
B
The Fourier series coefficients exist but the reconstruction converges at no point
C
The Fourier series coefficients exist and the reconstruction converges at most points.
D
The Fourier series coefficients exist and the reconstruction converges at every point
4
GATE EE 2011
MCQ (Single Correct Answer)
+1
-0.3
The fourier series expansion $$$f\left(t\right)\;=\;a_0\;+\;\sum_{n=1}^\infty a_n\cos\;n\omega t\;+\;b_n\sin\;n\omega t$$$ of the periodic signal shown below will contain the following nonzero terms GATE EE 2011 Signals and Systems - Continuous Time Periodic Signal Fourier Series Question 23 English
A
$$a_0\;and\;b_n\;,\;n=1,\;3,\;5,\;..............\infty$$
B
$$a_0\;and\;a_n\;,\;n=1,\;2,\;3,\;..............\infty$$
C
$$a_0\;,\;a_n\;and\;b_n\;,\;n=1,\;2,\;3,\;..............\infty$$
D
$$a_0\;and\;a_n\;,\;n=1,\;3,\;5,\;..............\infty$$
GATE EE Subjects
EXAM MAP