1
GATE CSE 2003
+2
-0.6
The literal count of a Boolean expression is the sum of the number of times each literal appears in the expression. For example, the literal count of $$(xy + xz)$$ is $$4.$$ What are the minimum possible literal counts of the product -of -sum and sum -of-product representations respectively of the function given by the following Karnaugh map? Here, $$X$$ denotes “don’t care”
A
$$(11, 9)$$
B
$$(9,13)$$
C
$$(9,10)$$
D
$$(11, 11)$$
2
GATE CSE 2000
+2
-0.6
Which function does NOT implement the Karnaugh map given below?
A
$$(w+x)y$$
B
$$x\,y + y\,w$$
C
$$\left( {w + x} \right)\,\,\left( {\overline w + y} \right)\left( {\overline x + y} \right)$$
D
None of the above
3
GATE CSE 1996
+2
-0.6
What is the equivalent Boolean expression in product-of-sums form for the Karnaugh map given in fig?
A
$$B\,\overline D + \overline B \,D$$
B
$$\left( {B + \overline C + D} \right)\left( {\overline B + C + \overline D } \right)$$
C
$$\left( {B + D} \right)\left( {\overline B + \overline D } \right)$$
D
$$\left( {B + \overline D } \right)\left( {\overline B + D} \right)$$
GATE CSE Subjects
EXAM MAP
Medical
NEET