1
GATE CSE 2003
+2
-0.6
The literal count of a Boolean expression is the sum of the number of times each literal appears in the expression. For example, the literal count of $$(xy + xz)$$ is $$4.$$ What are the minimum possible literal counts of the product -of -sum and sum -of-product representations respectively of the function given by the following Karnaugh map? Here, $$X$$ denotes “don’t care” A
$$(11, 9)$$
B
$$(9,13)$$
C
$$(9,10)$$
D
$$(11, 11)$$
2
GATE CSE 2000
+2
-0.6
Which function does NOT implement the Karnaugh map given below? A
$$(w+x)y$$
B
$$x\,y + y\,w$$
C
$$\left( {w + x} \right)\,\,\left( {\overline w + y} \right)\left( {\overline x + y} \right)$$
D
None of the above
3
GATE CSE 1996
+2
-0.6
What is the equivalent Boolean expression in product-of-sums form for the Karnaugh map given in fig? A
$$B\,\overline D + \overline B \,D$$
B
$$\left( {B + \overline C + D} \right)\left( {\overline B + C + \overline D } \right)$$
C
$$\left( {B + D} \right)\left( {\overline B + \overline D } \right)$$
D
$$\left( {B + \overline D } \right)\left( {\overline B + D} \right)$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization
EXAM MAP
Joint Entrance Examination