1
GATE EE 2014 Set 3
+1
-0.3
The driving point impedance Z(s) for the circuit shown below is
A
$$\frac{s^4\;+\;3s^2\;+\;1}{s^3\;+\;2s}$$
B
$$\frac{s^4\;+\;2s^2\;+\;4}{s^2\;+\;2}$$
C
$$\frac{s^2+1}{s^4\;+s^2\;+\;1}$$
D
$$\frac{s^3+1}{s^4\;+s^2\;+\;1}$$
2
GATE EE 2005
+1
-0.3
For the two port network shown in the Fig. the $$Z$$ $$-$$ matrix is given by
A
$$\left[ {\matrix{ {{Z_1}} & {{Z_1} + {Z_2}} \cr {{Z_1} + {Z_2}} & {{Z_2}} \cr } } \right]$$
B
$$\left[ {\matrix{ {{Z_1}} & {{Z_1}} \cr {{Z_1} + {Z_2}} & {{Z_2}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{Z_1}} & {{Z_2}} \cr {{Z_1}} & {{Z_1} + {Z_2}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{Z_1}} & {{Z_1}} \cr {{Z_1}} & {{Z_1} + {Z_2}} \cr } } \right]$$
3
GATE EE 2001
+1
-0.3
A passive 2-port network is in a steady state.Compare to its input, the steady state output can never offer
A
higher voltage
B
lower impedance
C
greater power
D
better regulation
4
GATE EE 1994
+1
-0.3
If a two-port network is passive, then we have, with the usual notation, the following relationship
A
$$h_{12}=h_{21}$$
B
$$h_{12}=-h_{21}$$
C
$$h_{11}=h_{22}$$
D
$$h_{11}h_{22}-h_{12}h_{21}=1$$
EXAM MAP
Medical
NEET