1
GATE EE 2014 Set 3
+1
-0.3
The driving point impedance Z(s) for the circuit shown below is A
$$\frac{s^4\;+\;3s^2\;+\;1}{s^3\;+\;2s}$$
B
$$\frac{s^4\;+\;2s^2\;+\;4}{s^2\;+\;2}$$
C
$$\frac{s^2+1}{s^4\;+s^2\;+\;1}$$
D
$$\frac{s^3+1}{s^4\;+s^2\;+\;1}$$
2
GATE EE 2005
+1
-0.3
For the two port network shown in the Fig. the $$Z$$ $$-$$ matrix is given by A
$$\left[ {\matrix{ {{Z_1}} & {{Z_1} + {Z_2}} \cr {{Z_1} + {Z_2}} & {{Z_2}} \cr } } \right]$$
B
$$\left[ {\matrix{ {{Z_1}} & {{Z_1}} \cr {{Z_1} + {Z_2}} & {{Z_2}} \cr } } \right]$$
C
$$\left[ {\matrix{ {{Z_1}} & {{Z_2}} \cr {{Z_1}} & {{Z_1} + {Z_2}} \cr } } \right]$$
D
$$\left[ {\matrix{ {{Z_1}} & {{Z_1}} \cr {{Z_1}} & {{Z_1} + {Z_2}} \cr } } \right]$$
3
GATE EE 2001
+1
-0.3
A passive 2-port network is in a steady state.Compare to its input, the steady state output can never offer
A
higher voltage
B
lower impedance
C
greater power
D
better regulation
4
GATE EE 1994
+1
-0.3
If a two-port network is passive, then we have, with the usual notation, the following relationship
A
$$h_{12}=h_{21}$$
B
$$h_{12}=-h_{21}$$
C
$$h_{11}=h_{22}$$
D
$$h_{11}h_{22}-h_{12}h_{21}=1$$
GATE EE Subjects
Electromagnetic Fields
Signals and Systems
Engineering Mathematics
General Aptitude
Power Electronics
Power System Analysis
Analog Electronics
Control Systems
Digital Electronics
Electrical Machines
Electric Circuits
Electrical and Electronics Measurement
EXAM MAP
Joint Entrance Examination