1
GATE CSE 1993
Subjective
+5
-0
Show that proposition $$C$$ is a logical consequence of the formula $$A \wedge \left( {A \to \left( {B \vee C} \right) \wedge \left( {B \to \sim A} \right)} \right)$$ using truth tables.
2
GATE CSE 1992
Subjective
+5
-0
Uses Modus ponens $$\left( {A,\,\,A \to B\,|\,\, = B} \right)$$ or resolution to show that the following set is inconsistent:

(1) $$Q\left( x \right) \to P\left( x \right)V \sim R\left( a \right)$$
(2) $$R\left( a \right) \vee \sim Q\left( a \right)$$
(3) $$Q\left( a \right)$$
(4) $$ \sim P\left( y \right)$$
where $$x$$ and $$y$$ are universally quantifies variables, $$a$$ is a constant and $$P, Q, R$$ are monadic predicates.

GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12