1
GATE CSE 1999
Subjective
+5
-0
(a) Show that the formula $$\left[ {\left( { \sim p \vee Q} \right) \Rightarrow \left( {q \Rightarrow p} \right)} \right]$$ is not a tautology.

(b) Let $$A$$ be a tautology and $$B$$ be any other formula. Prove that $$\left( {A \vee B} \right)$$ is a tautology.

2
GATE CSE 1993
Subjective
+5
-0
Show that proposition $$C$$ is a logical consequence of the formula $$A \wedge \left( {A \to \left( {B \vee C} \right) \wedge \left( {B \to \sim A} \right)} \right)$$ using truth tables.
3
GATE CSE 1992
Subjective
+5
-0
Uses Modus ponens $$\left( {A,\,\,A \to B\,|\,\, = B} \right)$$ or resolution to show that the following set is inconsistent:

(1) $$Q\left( x \right) \to P\left( x \right)V \sim R\left( a \right)$$
(2) $$R\left( a \right) \vee \sim Q\left( a \right)$$
(3) $$Q\left( a \right)$$
(4) $$\sim P\left( y \right)$$
where $$x$$ and $$y$$ are universally quantifies variables, $$a$$ is a constant and $$P, Q, R$$ are monadic predicates.

GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination