1
GATE CSE 2002
Subjective
+5
-0
Determine whether each of the following is a tautology, a contradiction, or neither ("$$\vee$$" is disjunction, "$$\wedge$$" is conjuction, "$$\to$$" is implication, "$$\neg$$" is negation, and "$$\leftrightarrow$$" is biconditional (if and only if).

(i)$$\,\,\,\,\,\,A \leftrightarrow \left( {A \vee A} \right)$$
(ii)$$\,\,\,\,\,\,\left( {A \vee B} \right) \to B$$
(iii)$$\,\,\,\,\,\,A \vee \left( {\neg \left( {A \vee B} \right)} \right)$$

2
GATE CSE 1999
Subjective
+5
-0
Let $$\left( {\left\{ {p,\,q} \right\},\, * } \right)$$ be a semi group where $$p * p = q$$. Show that: (a) $$p * q = q * p,$$, and (b) $$q * q = q$$
3
GATE CSE 1999
Subjective
+5
-0
(a) Show that the formula $$\left[ {\left( { \sim p \vee Q} \right) \Rightarrow \left( {q \Rightarrow p} \right)} \right]$$ is not a tautology.

(b) Let $$A$$ be a tautology and $$B$$ be any other formula. Prove that $$\left( {A \vee B} \right)$$ is a tautology.

4
GATE CSE 1993
Subjective
+5
-0
Show that proposition $$C$$ is a logical consequence of the formula $$A \wedge \left( {A \to \left( {B \vee C} \right) \wedge \left( {B \to \sim A} \right)} \right)$$ using truth tables.
GATE CSE Subjects
EXAM MAP
Medical
NEET