1
GATE CSE 2002
Subjective
+5
-0
Determine whether each of the following is a tautology, a contradiction, or neither ("$$\vee$$" is disjunction, "$$\wedge$$" is conjuction, "$$\to$$" is implication, "$$\neg$$" is negation, and "$$\leftrightarrow$$" is biconditional (if and only if).

(i)$$\,\,\,\,\,\,A \leftrightarrow \left( {A \vee A} \right)$$
(ii)$$\,\,\,\,\,\,\left( {A \vee B} \right) \to B$$
(iii)$$\,\,\,\,\,\,A \vee \left( {\neg \left( {A \vee B} \right)} \right)$$

2
GATE CSE 1999
Subjective
+5
-0
Let $$\left( {\left\{ {p,\,q} \right\},\, * } \right)$$ be a semi group where $$p * p = q$$. Show that: (a) $$p * q = q * p,$$, and (b) $$q * q = q$$
3
GATE CSE 1999
Subjective
+5
-0
(a) Show that the formula $$\left[ {\left( { \sim p \vee Q} \right) \Rightarrow \left( {q \Rightarrow p} \right)} \right]$$ is not a tautology.

(b) Let $$A$$ be a tautology and $$B$$ be any other formula. Prove that $$\left( {A \vee B} \right)$$ is a tautology.

4
GATE CSE 1993
Subjective
+5
-0
Show that proposition $$C$$ is a logical consequence of the formula $$A \wedge \left( {A \to \left( {B \vee C} \right) \wedge \left( {B \to \sim A} \right)} \right)$$ using truth tables.
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination