Let L1 be the language represented by the regular expression b*ab*(ab*ab*)* and L2 = { w ∈ (a + b)* | |w| ≤ 4 }, where |w| denotes the length of string w. The number of strings in L2 which are also in L1 is __________.
Consider the 5-state DFA $M$ accepting the language $L(M) \subseteq (0+1)^*$ shown below. For any string $w \in (0+1)^*$ let $n_0(w)$ be the number of 0's in $w$ and $n_1(w)$ be the number of 1's in $w$.
Which of the following statements is/are FALSE?
Consider the following two regular expressions over the alphabet {0,1} :
$$r = 0^* + 1^*$$
$$s = 01^* + 10^*$$
The total number of strings of length less than or equal to 5, which are neither in r nor in s, is ________
Consider the language L over the alphabet {0, 1}, given below:
$$L = \{ w \in {\{ 0,1\} ^ * }|w$$ does not contain three or more consecutive $$1's\} $$.
The minimum number of states in a Deterministic Finite-State Automaton (DFA) for L is ___________.