1
GATE CSE 2019
MCQ (Single Correct Answer)
+2
-0.67
Let G be any connected, weighted, undirected graph.
I. G has a unique minimum spanning tree, if no two edges of G have the same weight.
II. G has a unique minimum spanning tree, if, for every cut of G, there is a unique minimum-weight edge crossing the cut.
Which of the above two statements is/are TRUE?
2
GATE CSE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Suppose L = { p, q, r, s, t } is a lattice represented by the following Hasse diagram:
For any $$x, y ∈ L$$, not necessarily distinct, $$x ∨ y$$ and x ∧ y are join and meet of x, y, respectively. Let $$L^3 = \left\{\left(x, y, z\right): x, y, z ∈ L\right\}$$ be the set of all ordered triplets of the elements of L. Let pr be the probability that an element $$\left(x, y,z\right) ∈ L^3$$ chosen equiprobably satisfies $$x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)$$. Then
3
GATE CSE 2015 Set 1
Numerical
+2
-0
Let G be a connected planar graph with 10 vertices. If the number of edges on each face is three, then the number of edges in G is ___________.
Your input ____
4
GATE CSE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A graph is self-complementary if it is isomorphic to its complement. For all self-complementary graphs on $$n$$ vertices, $$n$$ is
Questions Asked from Graph Theory (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 2 (1)
GATE CSE 2024 Set 1 (2)
GATE CSE 2023 (2)
GATE CSE 2022 (4)
GATE CSE 2021 Set 2 (1)
GATE CSE 2021 Set 1 (3)
GATE CSE 2020 (1)
GATE CSE 2019 (1)
GATE CSE 2015 Set 1 (2)
GATE CSE 2015 Set 2 (2)
GATE CSE 2014 Set 2 (1)
GATE CSE 2014 Set 3 (2)
GATE CSE 2014 Set 1 (2)
GATE CSE 2013 (1)
GATE CSE 2012 (2)
GATE CSE 2010 (1)
GATE CSE 2008 (5)
GATE CSE 2007 (2)
GATE CSE 2006 (3)
GATE CSE 2005 (1)
GATE CSE 2004 (4)
GATE CSE 2003 (2)
GATE CSE 2001 (1)
GATE CSE 1995 (1)
GATE CSE 1992 (1)
GATE CSE 1991 (1)
GATE CSE 1990 (1)
GATE CSE 1989 (1)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages