An articulation point in a connected graph is a vertex such that removing the vertex and its incident edges disconnects the graph into two or more connected components.
Let T be a DFS tree obtained by doing DFS in a connected undirected graph G. Which of the following option is/are correct?
Let G = (V, E) be an undirected unweighted connected graph. The diameter of G is defined as:
diam(G) = $$\displaystyle\max_{u, x\in V}$$ {the length of shortest path between u and v}
Let M be the adjacency matrix of G.
Define graph G2 on the same set of vertices with adjacency matrix N, where
$$N_{ij} =\left\{ {\begin{array}{*{20}{c}} {1 \ \ \text{if} \ \ {M_{ij}} > 0 \ \ \text{or} \ \ P_{ij} > 0, \ \text{where} \ \ P = {M^2}}\\ {0, \ \ \ \ \ \text{otherwise}} \end{array}} \right.$$
Which one of the following statements is true?