1
GATE CSE 2004
+2
-0.6
Let $${G_1} = \left( {V,\,{E_1}} \right)$$ and $${G_2} = \left( {V,\,{E_2}} \right)$$ be connected graphs on the same vertex set $$V$$ with more than two vertices. If $${G_1} \cap {G_2} = \left( {V,{E_1} \cap {E_2}} \right)$$ is not a connected graph, then the graph $${G_1} \cup {G_2} = \left( {V,{E_1} \cup {E_2}} \right)$$
A
cannot have a cut vertex
B
must have a cycle
C
must have a cut-edge (bridge)
D
has chromatic number strictly greater than those of $${G_1}$$ and$${G_2}$$
2
GATE CSE 2004
+2
-0.6
What is the number of vertices in an undirected connected graph with $$27$$ edges, $$6$$ vertices of degree $$2$$, $$\,\,$$ $$3$$ vertices of degree 4 and remaining of degree 3?
A
$$10$$
B
$$11$$
C
$$18$$
D
$$19$$
3
GATE CSE 2003
+2
-0.6
$$A$$ graph $$G$$ $$=$$ $$(V, E)$$ satisfies $$\left| E \right| \le \,3\left| V \right| - 6.$$ The min-degree of $$G$$ is defined as $$\mathop {\min }\limits_{v \in V} \left\{ {{{\mathop{\rm d}\nolimits} ^ \circ }egree\left( v \right)} \right\}$$. Therefore, min-degree of $$G$$ cannot be
A
$$3$$
B
$$4$$
C
$$5$$
D
$$6$$
4
GATE CSE 2003
+2
-0.6
How many perfect matchings are there in a complete graph of 6 vertices?
A
$$15$$
B
$$24$$
C
$$30$$
D
$$60$$
GATE CSE Subjects
Discrete Mathematics
Programming Languages
Theory of Computation
Operating Systems
Digital Logic
Computer Organization
Database Management System
Data Structures
Computer Networks
Algorithms
Compiler Design
Software Engineering
Web Technologies
General Aptitude
EXAM MAP
Joint Entrance Examination