1
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6
$$A$$ graph $$G$$ $$=$$ $$(V, E)$$ satisfies $$\left| E \right| \le \,3\left| V \right| - 6.$$ The min-degree of $$G$$ is defined as $$\mathop {\min }\limits_{v \in V} \left\{ {{{\mathop{\rm d}\nolimits} ^ \circ }egree\left( v \right)} \right\}$$. Therefore, min-degree of $$G$$ cannot be
A
$$3$$
B
$$4$$
C
$$5$$
D
$$6$$
2
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6
How many perfect matchings are there in a complete graph of 6 vertices?
A
$$15$$
B
$$24$$
C
$$30$$
D
$$60$$
3
GATE CSE 2001
MCQ (Single Correct Answer)
+2
-0.6
how many undirected graphs (not necessarily connected) can be constructed out of a given $$\,\,\,\,V = \left\{ {{v_1},\,\,{v_2},\,....,\,\,{v_n}} \right\}$$ of $$n$$ vertices?
A
$$n\left( {n - 1} \right)/2$$
B
$${2^n}$$
C
$$n!$$
D
$${2^{n\left( {n - 1} \right)/2}}$$
4
GATE CSE 1995
Subjective
+2
-0
Prove that in a finite graph, the number of vertices of odd degree is always even.
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12