1
GATE EE 2025
MCQ (Single Correct Answer)
+2
-0.67

Let continuous-time signals $x_1(t)$ and $x_2(t)$ be

$x_1(t)=\left\{\begin{array}{cc}1, & t \in[0,1] \\ 2-t, & t \in[1,2] \\ 0, & \text { otherwise }\end{array}\right.$

and $x_2(t)=\left\{\begin{array}{cc}t, & t \in[0,1] \\ 2-t, & t \in[1,2] \\ 0, & \text { otherwise }\end{array}\right.$.

Consider the convolution

$y(t)=x_1(t) * x_2(t)$. Then $\int\limits_{-\infty}^{\infty} y(t) d t$ is :

A
1.5
B
2.5
C
3.5
D
4
2
GATE EE 2024
Numerical
+2
-0

If the energy of a continuous-time signal $x(t)$ is $E$ and the energy of the signal $2x(2t - 1)$ is $cE$, then $c$ is _____ (rounded off to 1 decimal place).

Your input ____
3
GATE EE 2023
Numerical
+2
-0

The period of the discrete-time signal $$x[n]$$ described by the equation below is $$N=$$ __________ (Round off to the nearest integer).

$$x[n] = 1 + 3\sin \left( {{{15\pi } \over 8}n + {{3\pi } \over 4}} \right) - 5\sin \left( {{\pi \over 3}n - {\pi \over 4}} \right)$$

Your input ____
4
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The function shown in the figure can be represented as GATE EE 2014 Set 1 Signals and Systems - Continuous and Discrete Time Signals Question 7 English
A
$$u\left(t\right)-u\left(t-T\right)+\frac{\left(t-T\right)}Tu\left(t-T\right)-\left(\frac{t-2T}T\right)u\left(t-2T\right)$$
B
$$u\left(t\right)+\frac tTu\left(t-T\right)-\frac tTu\left(t-2T\right)$$
C
$$u\left(t\right)-u\left(t-T\right)+\frac{\left(t-T\right)}Tu\left(t\right)-\left(\frac{t-2T}T\right)u\left(t\right)$$
D
$$u\left(t\right)+\frac{\left(t-T\right)}Tu\left(t-T\right)-2\frac{\left(t-2T\right)}Tu\left(t-2T\right)$$
GATE EE Subjects
EXAM MAP