1
GATE EE 2024
Numerical
+2
-0

In the circuit shown, $Z_1 = 50\angle -90^{\circ} \Omega$ and $Z_2 = 200\angle -30^{\circ} \Omega$. It is supplied by a three phase 400 V source with the phase sequence being R-Y-B. Assume the watt meters $W_1$ and $W_2$ to be ideal. The magnitude of the difference between the readings of $W_1$ and $W_2$ in watts is _________________ (rounded off to 2 decimal places).

GATE EE 2024 Electric Circuits - Three Phase Circuits Question 4 English
Your input ____
2
GATE EE 2023
MCQ (Single Correct Answer)
+2
-0.67

A 3-phase, star-connected, balanced load is supplied from a 3-phase, 400 V (rms), balanced voltage source with phase sequence R-Y-B, as shown in the figure. If the wattmeter reading is $$-$$400 W and the line current is $$I_R=2$$ A (rms), then the power factor of the load per phase is

GATE EE 2023 Electric Circuits - Three Phase Circuits Question 7 English

A
Unity
B
0.5 leading
C
0.866 leading
D
0.707 lagging
3
GATE EE 2023
Numerical
+2
-0

A balanced delta connected load consisting of the series connection of one resistor (R = 15 $$\Omega$$) and a capacitor (C = 212.21 $$\mu$$F) in each phase is connected to three-phase, 50 Hz, 415 V supply terminals through a line having an inductance of L = 31.83 mH per phase, as shown in the figure. Considering the change in the supply terminal voltage with loading to be negligible, the magnitude of the voltage across the terminals $$V_{AB}$$ in Volts is ___________ (Round off to the nearest integer).

GATE EE 2023 Electric Circuits - Three Phase Circuits Question 6 English

Your input ____
4
GATE EE 2017 Set 2
MCQ (Single Correct Answer)
+2
-0.6
For the balanced Y-Y connected 3-Phase circuit shown in the figure below, the line-line voltage is 208 V rms and the total power absorbed by the load is 432 W at a power factor of 0.6 leading. GATE EE 2017 Set 2 Electric Circuits - Three Phase Circuits Question 14 English The approximate value of the impedance Z is
A
$$33\angle-53.1^\circ\;\Omega$$
B
$$60\angle53.1^\circ\;\Omega$$
C
$$60\angle-53.1^\circ\;\Omega$$
D
$$180\angle-53.1^\circ\;\Omega$$
GATE EE Subjects
EXAM MAP