A 5 kW, 220 V DC shunt motor has 0.5 $\Omega$ armature resistance including brushes. The motor draws a no-load current of 3 A. The field current is constant at 1 A. Assuming that the core and rotational losses are constant and independent of the load, the current (in amperes) drawn by the motor while delivering the rated load, for the best possible efficiency, is _______ (rounded off to 2 decimal places).
A 280 V, separately excited DC motor with armature resistance of 1 $$\Omega$$ and constant field excitation drives a load. The load torque is proportional to the speed. The motor draws a current of 30 A when running at a speed of 1000 rpm. Neglect frictional losses in the motor. The speed, in rpm, at which the motor will run, if an additional resistance of value 10 $$\Omega$$ is connected in series with the armature, is __________. (round off to nearest integer).