1
GATE CSE 2012
MCQ (Single Correct Answer)
+2
-0.6
Let $$G$$ be a complete undirected graph on $$6$$ vertices. If vertices of $$G$$ $$\,\,\,\,$$ are labeled, then the number of distinct cycles of length $$4$$ in $$G$$ is equal to
2
GATE CSE 2010
MCQ (Single Correct Answer)
+2
-0.6
The degree sequence of a simple graph is the sequence of the degrees of the nodes in the graph in decreasing order. Which of the following sequences can not be the degree sequence of any graph?
$${\rm I}.$$$$\,\,\,\,\,7,6,5,4,4,3,2,1$$
$${\rm I}{\rm I}.$$$$\,\,\,\,\,6,6,6,6,3,3,2,2$$
$${\rm I}{\rm I}{\rm I}.$$$$\,\,\,\,\,7,6,6,4,4,3,2,2$$
$${\rm I}V.$$$$\,\,\,\,\,8,7,7,6,4,2,1,1$$
$${\rm I}.$$$$\,\,\,\,\,7,6,5,4,4,3,2,1$$
$${\rm I}{\rm I}.$$$$\,\,\,\,\,6,6,6,6,3,3,2,2$$
$${\rm I}{\rm I}{\rm I}.$$$$\,\,\,\,\,7,6,6,4,4,3,2,2$$
$${\rm I}V.$$$$\,\,\,\,\,8,7,7,6,4,2,1,1$$
3
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
$$G$$ is a simple undirected graph. Some vertices of $$G$$ are of odd degree. Add a node $$v$$ to $$G$$ and make it adjacent to each odd degree vertex of $$G$$. The resultant graph is sure to be
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
A binary tree with $$n>1$$ nodes has $${n_1}$$, $${n_2}$$ and $${n_3}$$ nodes of degree one, two and three respectively. The degree of a node is defined as the number of its neighbours.
Starting with the above tree, while there remains a node $$v$$ of degree two in the tree, add an edge between the two neighbours of $$v$$ and then remove $$v$$ from the tree. How many edges will remain at the end of the process?
Questions Asked from Graph Theory (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE CSE 2024 Set 2 (1)
GATE CSE 2024 Set 1 (2)
GATE CSE 2023 (2)
GATE CSE 2022 (4)
GATE CSE 2021 Set 2 (1)
GATE CSE 2021 Set 1 (3)
GATE CSE 2020 (1)
GATE CSE 2015 Set 1 (2)
GATE CSE 2015 Set 2 (2)
GATE CSE 2014 Set 3 (2)
GATE CSE 2014 Set 2 (1)
GATE CSE 2014 Set 1 (2)
GATE CSE 2013 (1)
GATE CSE 2012 (2)
GATE CSE 2010 (1)
GATE CSE 2008 (5)
GATE CSE 2007 (2)
GATE CSE 2006 (3)
GATE CSE 2005 (1)
GATE CSE 2004 (4)
GATE CSE 2003 (2)
GATE CSE 2001 (1)
GATE CSE 1995 (1)
GATE CSE 1992 (1)
GATE CSE 1991 (1)
GATE CSE 1990 (1)
GATE CSE 1989 (1)
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages