1
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
If $$A = \left[ {\matrix{ { - 3} & 2 \cr { - 1} & 0 \cr } } \right]$$ then $$A$$ satisfies the relation
A
$$A - 31 + 2\,{A^{ - 1}} = 0$$
B
$${A^2} + 2A + 2I = 0$$
C
$$\left( {A + I} \right)\left( {A + 2I} \right) = 0$$
D
$${e^A} = 0$$
2
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
Let $$x$$ and $$y$$ be two vectors in a $$3-$$ dimensional space and $$ < x,y > $$ denote their dot product. Then the determinant det $$\left[ {\matrix{ { < x,x > } & { < x,y > } \cr { < y,x > } & { < y,y > } \cr } } \right] = $$ ______.
A
is zero when $$x$$ and $$y$$ are linearly independent
B
is positive when $$x$$ and $$y$$ are linearly independent
C
is non-zero for all non-zero $$x$$ and $$y$$
D
is zero only when either $$x$$ (or) $$y$$ is zero
3
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
For the matrix $$P = \left[ {\matrix{ 3 & { - 2} & 2 \cr 0 & { - 2} & 1 \cr 0 & 0 & 1 \cr } } \right],$$ one of the eigen values is $$-2.$$ Which of the following is an eigen vector?
A
$$\left( {\matrix{ 3 \cr { - 2} \cr 1 \cr } } \right)$$
B
$$\left[ {\matrix{ { - 3} \cr 2 \cr { - 1} \cr } } \right]$$
C
$$\left[ {\matrix{ 1 \cr { - 2} \cr 3 \cr } } \right]$$
D
$$\left[ {\matrix{ 2 \cr 5 \cr 0 \cr } } \right]$$
4
GATE EE 2005
MCQ (Single Correct Answer)
+2
-0.6
If $$R = \left[ {\matrix{ 1 & 0 & { - 1} \cr 2 & 1 & { - 1} \cr 2 & 3 & 2 \cr } } \right]$$ then the top row of $${R^{ - 1}}$$ is
A
$$\left[ {\matrix{ 5 & 6 & 4 \cr } } \right]$$
B
$$\left[ {\matrix{ 5 & -3 & 1 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 0 & -1 \cr } } \right]$$
D
$$\left[ {\matrix{ 2 & -1 & 0 \cr } } \right]$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12