1
GATE EE 2002
+1
-0.3
Given a vector field $$\overrightarrow F ,$$ the divergence theorem states that
A
$$\oint {\overrightarrow F .d\overrightarrow s = \int\limits_v {\Delta \,\,.\,\,\overrightarrow F \,dv} }$$
B
$$\int\limits_s {\overrightarrow F .\,\,d} \overrightarrow s = \int\limits_v {\Delta \times \overrightarrow F \,\,dV}$$
C
$$\int\limits_s {\overrightarrow F \times \,d} \overrightarrow s = \int\limits_v {\Delta \,\,.\,\,\overrightarrow F \,\,dV}$$
D
$$\int\limits_s {\overrightarrow F \times \,d} \overrightarrow s = \int\limits_v {\Delta \,\, \times \overrightarrow F \,\,dV}$$
2
GATE EE 1997
+1
-0.3
In a uniform electric field, field lines and equipotentials
A
are parallel to one another
B
intersect at $$45^\circ$$
C
intersect at $$30^\circ$$
D
are orthogonal
3
GATE EE 1996
+1
-0.3
If v, w, q stand for voltage, energy and charge, then v can be expressed
A
$$v=\frac{dq}{dw}$$
B
$$v=\frac{dw}{dq}$$
C
$$dv=\frac{dw}{dq}$$
D
$$dv=\frac{dq}{dw}$$
4
GATE EE 1994
True or False
+1
-0
In electrostatic field $$\nabla\times\overrightarrow E\equiv0$$
A
TRUE
B
FALSE
EXAM MAP
Medical
NEET