1
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the undirected graph $$G$$ defined as follows. The vertices of $$G$$ are bit strings of length $$n$$. We have an edge between vertex $$u$$ and vertex $$v$$ if and only if $$u$$ and $$v$$ differ in exactly one bit position (in other words, $$v$$ can be obtained from $$u$$ by flipping a single bit). The ratio of the choromatic number of $$G$$ to the diameter of $$G$$ is
A
$$1/{2^{n - 1}}$$
B
$$1/n$$
C
$$2/n$$
D
$$3/n$$
2
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following graphs is NOT planar? GATE CSE 2005 Discrete Mathematics - Graph Theory Question 20 English
A
G1
B
G2
C
G3
D
G4
3
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
The minimum number of colours required to colour the following graph, such that no two adjacent vertices are assigned the same colour, is GATE CSE 2004 Discrete Mathematics - Graph Theory Question 58 English
A
2
B
3
C
4
D
5
4
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
How many graphs on $$n$$ labeled vertices exist which have at least $$\left( {{n^2} - 3n} \right)/2\,\,\,$$ edges?
A
$${}^{\left( {{n^ \wedge }2 - n} \right)/2}{C_{\left( {{n^ \wedge }2 - 3n} \right)/2}}$$
B
$${\sum\limits_{k = 0}^{\left( {{n^ \wedge }2 - 3n} \right)/2} {{}^{\left( {{n^ \wedge }2 - n} \right)}{C_k}} }$$
C
$${}^{\left( {{n^ \wedge }2 - n} \right)/2}{C_n}$$
D
$$\sum\nolimits_{k = 0}^n {{}^{\left( {{n^ \wedge }2 - n} \right)/2}{C_k}} $$
GATE CSE Subjects
Software Engineering
Web Technologies
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSAT
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN