1
GATE CSE 2014 Set 3
+1
-0.3
Consider the following interm expression of $$F:$$
$$F\left( {P,\,Q,\,R,\,S} \right) = \sum {0,2,5,7,8,10,13,15}$$
The minterms $$2, 7, 8$$ and $$13$$ are 'do not care' terms. The minimal sum-of-products form for $$F$$ is _______
A
$$Q\overline S + \overline Q S$$
B
$$\overline Q \overline S + QS$$
C
$$\overline Q \overline R \overline S + \overline Q R\overline S + Q\overline R S + QRS$$
D
$$\overline P \overline Q \overline S + \overline P QS + PQS + P\overline Q \overline S$$
2
GATE CSE 2008
+1
-0.3
In the Karnaugh map shown below, $$X$$ denotes a don’t care term. What is the minimal form of the function represented by the Karnaugh map?
A
$$\overline b \,.\,\overline d + \overline a \,.\,\overline d$$
B
$$\overline a \,.\,\overline b + \overline b \,.\,\overline d + \overline a \,.\,\overline b \,.\overline d$$
C
$$\overline b \,.\,\overline d + \overline a \,.\,\overline b \,.\overline d$$
D
$$\overline a \,.\,\overline b + \,\overline b \,.\,\overline d + \overline a \,.\,\overline a \,.\overline d$$
3
GATE CSE 2002
+1
-0.3
Minimum $$SOP$$ for $$f(w, x, y, z)$$ shown in karnaugh $$-$$ map below is
A
$$x\,z + y'\,z$$
B
$$x\,z' + z\,x'$$
C
$$x'\,y + z\,x'$$
D
None
4
GATE CSE 2001
+1
-0.3
Given the following Karnaugh map, which one of the following represents the minimal Sum-Of-Products of the map?
A
$$xy + y'z$$
B
$$wx'y' + xy + xz$$
C
$$w'x + y'z + xy$$
D
$$xz+y$$
GATE CSE Subjects
EXAM MAP
Medical
NEET