1
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
A signal $${e^{ - \alpha t}}\,\sin \left( {\omega t} \right)$$ is the input to a real Linear Time Invariant system. Given $$K$$ and $$\phi $$ are constants, the output of the system will be of the form $$K{e^{ - \beta t}}\,\sin \,\left( {\upsilon t + \phi } \right)$$ where
A
$$\beta $$ need not be equal to $$\alpha $$ but $$\upsilon $$ equal to
B
$$\upsilon $$ need not be equal to $$\omega $$ but $$\beta $$ equal to $$\alpha $$
C
$$\beta $$ equal to $$\alpha $$ and $$\upsilon $$ equal to $$\omega $$
D
$$\beta $$ need not be equal to $$\alpha $$ and $$\upsilon $$ need not be equal to $$\omega $$
2
GATE EE 2008
MCQ (Single Correct Answer)
+1
-0.3
The impulse response of a causal linear time-invariant system is given as $$h(t)$$. Now consider the following two statements:

Statement-$$\left( {\rm I} \right)$$: Principle of superposition holds
Statement-$$\left( {\rm II} \right)$$: $$h\left( t \right) = 0$$ for $$t < 0$$

Which one of the following statements is correct?

A
Statement $$\left( {\rm I} \right)$$ is correct and Statement $$\left( {\rm II} \right)$$ is wrong
B
Statement $$\left( {\rm II} \right)$$ is correct and Statement $$\left( {\rm I} \right)$$ is wrong
C
Both Statement $$\left( {\rm I} \right)$$ and Statement $$\left( {\rm II} \right)$$ are wrong
D
Both Statement $$\left( {\rm I} \right)$$ and Statement $$\left( {\rm II} \right)$$ are correct
3
GATE EE 2007
MCQ (Single Correct Answer)
+1
-0.3
Let a signal $${a_1}\,\sin \left( {{\omega _1}t + {\phi _1}} \right)$$ be applied to a stable linear time-invariant system. Let the corresponding steady state output be represented as $${a_2}F\left( {{\omega _2}t + {\phi _2}} \right).$$ Then which of the following statements is true?
A
$$F$$ is not necessarily a ''sine'' or ''cosine'' function but must be periodic with $${\omega _1} = {\omega _2}.$$
B
$$F$$ must be a ''sine'' or ''cosine'' function with $${a_1} = {a_2}.$$
C
$$F$$ must be a ''sine'' function with $${\omega _1} = {\omega _2}.$$ and $${\phi _1} = {\phi _2}.$$
D
$$F$$ must be a ''sine'' or ''cosine'' function with $${\omega _1} = {\omega _2}.$$
4
GATE EE 2002
MCQ (Single Correct Answer)
+1
-0.3
$$s(t)$$ is step response and $$h(t)$$ is impulse response of a system. Its response $$y(t)$$ for any input $$u(t)$$ is given by
A
$${d \over {d\,t}}\int\limits_0^t s \left( {t - \tau } \right)\,u\left( \tau \right)\,d\,\tau $$
B
$$\int\limits_0^t s \left( {t - \tau } \right)\,u\left( \tau \right)\,d\,\tau $$
C
$$\int\limits_0^t {\int\limits_0^\tau s \left( {t - {\tau _1}} \right)\,u\left( {{\tau _1}} \right)\,d{\tau _1}} \,d\tau $$
D
$${d \over {d\,t}}\int\limits_0^t h \left( {t - \tau } \right)\,u\left( \tau \right)\,d\,\tau $$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12