1
GATE EE 2017 Set 1
Numerical
+2
-0
A separately excited DC generator supplies 150 A to a 145 V DC grid. The generator is running at 800 RPM. The armature resistance of the generator is 0.1 Ω. If the speed of the generator is increased to 1000 RPM, the current in amperes supplied by the generator to the DC grid is _______.
Your input ____
2
GATE EE 2017 Set 1
Numerical
+2
-0
A 220 V DC series motor runs drawing a current of 30 A from the supply. Armature and field circuit resistances are 0.4 Ω and 0.1 Ω respectively. The load torque varies as the square of the speed. The flux in the motor may be taken as being proportional to the armature current. To reduce the speed of the motor by 50% the resistance in ohms that should be added in series with the armature is _________.
Your input ____
3
GATE EE 2016 Set 1
Numerical
+2
-0
A DC shunt generator delivers 45 A at a terminal voltage of 220 V. The armature and the shunt field resistance are 0.01 Ω and 44 Ω respectively. The stray losses are 375 W. The percentage efficiency of the DC generator is ______.
Your input ____
4
GATE EE 2015 Set 1
Numerical
+2
-0
A DC motor has the following specifications: 10 Hp, 37.5 A, 230 V; flux/pole = 0.01 Wb, number of poles = 4, number of conductors = 666, number of parallel paths = 2. Armature resistance = 0.267 Ω. The armature reaction is negligible and rotational losses are 600 W. The motor operates from a 230 V DC supply. If the motor runs at 1000 rpm, the output torque produced (in Nm) is ________.
Your input ____
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12