1
GATE EE 2014 Set 3
+2
-0.6
A perfectly conducting metal plate is placed in x-y plane in a right handed coordinate system. A charge of $$+32{\mathrm{πε}}_0\sqrt2$$ columbs is placed at coordinate (0, 0, 2). $${\mathrm\varepsilon}_0$$ is the permittivity of free space. Assume $$\widehat i,\;\widehat j,\;\widehat k$$ to be unit vectors along x, y and z axes respectively. At the coordinate $$\left(\sqrt2,\sqrt2,0\right)$$, the electric field vector $$\overrightarrow E$$ (Newtons/Columb) will be
A
$$2\sqrt2\widehat K$$
B
$$-2\widehat K$$
C
$$2\widehat K$$
D
$$-2\sqrt2\widehat K$$
2
GATE EE 2013
+2
-0.6
A dielectric slab with 500 mm x 500 mm cross-section is 0.4 m long. The slab is subjected to a uniform electric field of $$E=6{\widehat a}_x+8{\widehat a}_y$$ kV /mm. The relative permittivity of the dielectric material is equal to 2. The value of constant $$\varepsilon_0$$ is $$8.85\times10^{-12}\;F/m$$ . The energy stored in the dielectric in Joules is
A
$$8.85\times10^{-11}$$
B
$$8.85\times10^{-5}$$
C
88.5
D
885
3
GATE EE 2011
+2
-0.6
A capacitor is made with a polymeric dielectric having an $$\varepsilon_0$$ of 2.26 and a dielectric breakdown strength of 50 kV/cm. The permittivity of free space is 8.85 pF/m. If the rectangular plates of the capacitor have a width of 20 cm and a length of 40 cm, then the maximum electric charge in the capacitor is
A
2 µC
B
4 µC
C
8 µC
D
10 µC
4
GATE EE 2009
+2
-0.6
$$F\left(x,y\right)=\left(x^2\;+\;xy\right)\;{\widehat a}_x\;+\;\left(y^2\;+\;xy\right)\;{\widehat a}_y$$\$. Its line integral over the straight line from (x, y)=(0,2) to (2,0) evaluates to
A
-8
B
4
C
8
D
$$0$$
EXAM MAP
Medical
NEET