1
GATE EE 2017 Set 1
MCQ (Single Correct Answer)
+1
-0.3
A closed loop system has the characteristic equation given by
$${s^3} + K{s^2} + \left( {K + 2} \right)s + 3 = 0.$$ For this system to be stable, which one of the following conditions should be satisfied?
A
$$0 < K < 0.5$$
B
$$0.5 < K < 1$$
C
$$0 < K < 1$$
D
$$K > 1$$
2
GATE EE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
A single-input single-output feedback system has forward transfer function $$𝐺(𝑠)$$ and feedback transfer function $$𝐻(𝑠).$$ It is given that $$\left| {G\left( s \right)H\left( s \right)} \right| < 1.$$ Which of the following is true about the stability of the system?
A
The system is always stable
B
The system is stable if all zeros of $$𝐺(𝑠)𝐻(𝑠)$$ are in left half of the $$s$$-plane
C
The system is stable if all poles of $$𝐺(𝑠)𝐻(𝑠)$$ are in left half of the s-plane
D
It is not possible to say whether or not the system is stable from the information given
3
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
In the formation of Routh-Hurwitz array for a polynomial, all the elements of a row have zero values. This premature termination of the array indicates the presence of
A
only one root at the origin
B
imaginary roots
C
only positive real roots
D
only negative roots
4
GATE EE 2009
MCQ (Single Correct Answer)
+1
-0.3
The first two rows of Routh's tabulation of a third order equation are as follows $$$\left. {\matrix{ {{s^3}} \cr {{s^2}} \cr } } \right|\matrix{ 2 & 2 \cr 4 & 4 \cr } $$$
this means there are

A
two roots at $$s$$ $$ = \pm j$$ and one root in right half $$s$$ - plane
B
two roots at $$s$$ $$ = \pm j2$$ and one root in left half $$s$$ - plane
C
two roots at $$s$$ $$ = \pm j2$$ and one root in right half $$s$$ - plane
D
two roots at $$s$$ $$ = \pm j$$and one root in left half $$s$$ - plane
GATE EE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12