1
GATE EE 2002
Subjective
+5
-0
A $$415$$ $$V,$$ $$2$$ pole, $$3$$ phase, $$50$$ $$Hz,$$ star connected, non-salient pole synchronous motor has synchronous reactance of $$2\,\Omega $$ per phase and negligible stator resistance. At a particular field excitation, it draws 20 A at unity power factor from a $$415$$ $$V,$$ $$3$$ phase, $$50$$ $$Hz$$ supply. The mechanical load on the motor is now increased till the stator current is equal to $$50$$ $$A.$$ The field excitation remains unchanged. Determine:
$$(a)$$ the per phase open circuit voltage $${E_0}$$
$$(b)$$ the developed power for the new operating condition and corresponding power factor.
2
GATE EE 2001
Subjective
+5
-0
A $$50$$ $$kW$$ synchronous motor is tested by driving it by another motor. When the excitation is not switched on, the driving motor takes $$800$$ $$W.$$ When the armature is short-circuited and the rated armature current of $$10$$ $$A$$ is passed through it, the driving motor requires $$2500$$ $$W.$$ On open-circuiting the armature with rated excitation, the driving motor takes $$1800$$ $$W.$$ Calculate the efficiency of the synchronous motor at $$50\% $$ load. Neglect the losses in the driving motor.
3
GATE EE 2001
Subjective
+5
-0
Two identical synchronous generators, each of $$100$$ $$MVA,$$ are working in parallel supplying $$100$$ $$MVA$$ at $$0.8$$ lagging $$p.f.$$ at rated voltage. Initially the machines are sharing load equally. If the field current of first generator is reduced by $$5\% $$ and of the second generator increased by $$5\% ,$$ find the sharing of load ($$MW$$ and $$MVAR$$) between the generators.
Assume$${X_d} = {X_q} = 0.8\,\,p.u.$$ no field saturation and rated voltage across load. Reasonable approximations may be made.
4
GATE EE 2000
Subjective
+5
-0
A $$2300$$ $$V,$$ $$3$$-phase synchronous motor driving a pump is provided with a line ammeter and a field rheostat. When the rheostat is adjusted such that the $$ac$$ line current is minimum. The ammeter reads $$8.8$$ $$A.$$ What is the power being delivered to the pump, neglecting losses? How should the rheostat be adjusted so that the motor operates at $$0.8$$ leading power factor? How many $$kVARs$$ is the motor supplying to the system at this new power factor?
GATE EE Subjects
EXAM MAP