1
GATE EE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A 10 kHz even-symmetric square wave is passed through a bandpass filter with centre frequency at 30 kHz and 3 dB passband of 6 kHz. The filter output is
A
a highly attenuated square wave at 10 kHz
B
nearly zero.
C
a nearly perfect cosine wave at 30 kHz.
D
a nearly perfect sine wave at 30 kHz.
2
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Let f(t) be a continuous time signal and let F($$\omega$$) be its Fourier Transform defined by $$F\left(\omega\right)=\int_{-\infty}^\infty f\left(t\right)e^{-j\omega t}dt$$. Define g(t) by $$g\left(t\right)=\int_{-\infty}^\infty F\left(u\right)e^{-jut}du$$. What is the relationship between f(t) and g(t)?
A
g(t) would always be proportional to f(t)
B
g(t) would be proportional to f(t) if f(t) is an even function
C
g(t) would be proportional to f(t) only if f(t) is a sinusoidal function
D
g(t) would never be proportional to f(t)
3
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
The Fourier transform of a signal h(t) is $$H\left(j\omega\right)=\left(2\cos\omega\right)\left(\sin2\omega\right)/\omega$$. The value of h(0) is
A
1/4
B
1/2
C
1
D
2
4
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
x(t) is a positive rectangular pulse from t = -1 to t = +1 with unit height as shown in the figure. The value of $$\int_{-\infty}^\infty\left|X\left(\omega\right)\right|^2d\omega$$ {where X($$\mathrm\omega$$) is the Fourier transform of x(t)} is GATE EE 2010 Signals and Systems - Continuous Time Signal Fourier Transform Question 3 English
A
2
B
2$$\mathrm\pi$$
C
4
D
4$$\mathrm\pi$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12