Let x1(t) = e$$-$$t u(t) and x2(t) = u(t) $$-$$ u(t $$-$$ 2), where u( . ) denotes the unit step function. If y(t) denotes the convolution of x1(t) and x2(t), then $$\mathop {\lim }\limits_{t \to \infty } y(t)$$ = __________ (rounded off to one decimal place).
The outputs of four systems (S1, S2, S3 and S4) corresponding to the input signal sin(t), for all time t, are shown in the figure.
Based on the given information, which of the four systems is/are definitely NOT LTI (linear and time-invariant)?
For a vector $$\overline x $$ = [x[0], x[1], ....., x[7]], the 8-point discrete Fourier transform (DFT) is denoted by $$\overline X $$ = DFT($$\overline x $$) = [X[0], X[1], ....., X[7]], where
$$X[k] = \sum\limits_{n = 0}^7 {x[n]\exp \left( { - j{{2\pi } \over 8}nk} \right)} $$.
Here, $$j = \sqrt { - 1} $$. If $$\overline x $$ = [1, 0, 0, 0, 2, 0, 0, 0] and $$\overline y $$ = DFT (DFT($$\overline x $$)), then the value of y[0] is __________ (rounded off to one decimal place).
Mr. X speaks ____________ Japanese ___________ Chinese.